Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 5

Exercise 1. Closed subschemes of Proj. Let B be an \mathbb{N} -graded ring and I be a homogeneous ideal. Show that the subset

$$V_{+}(I) = {\mathfrak{p} \in \operatorname{Proj}(B) \mid I \subset \mathfrak{p}}$$

is closed in $\operatorname{Proj}(B)$ and can be endowed a scheme structure $via\ \operatorname{Proj}(B/I)$. Show that for any $b \in B_+$ homogeneous

$$(B/I)_{(b)} \cong B_{(b)}/I_{(b)}.$$

In what follows, $V_{+}(I)$ is taken in the schematic sense of the previous exercise.

Exercise 2. Proj and base change. Let R be a ring and R' be an R-algebra. Let A be an \mathbb{N} -graded ring such that A_0 is an R-algebra. Define $B = A \otimes_R R'$ and write $\psi \colon A \to B$.

- (1) With the notations of week 4, exercise 5 show that $U(\psi) = \text{Proj}(B)$.
- (2) Show that the commutative diagram

$$\begin{array}{ccc} \operatorname{Proj}(B) & \longrightarrow & \operatorname{Proj}(A) \\ \downarrow & & \downarrow \\ \operatorname{Spec}(R') & \longrightarrow & \operatorname{Spec}(R) \end{array}$$

is a Cartesian square.¹

- (3) Let I be an ideal of R. Show that if R' = R/I then we have $Proj(B) = V_+(\bigoplus_{n\geq 0} IA_n)$ inside Proj(A).
- (4) Let R be a ring. Let $R' = R[x_0, ..., x_n]$. Using the above, realize $\mathbb{P}^n_R \times_R \mathbb{A}^{n+1}_R$ as the Proj of a graded ring.

Exercise 3. Blow-ups. Let R be a ring and $I \subset R$ an ideal. We define the blow-up of $\operatorname{Spec}(R)$ at V(I) to be the map $(I^0 = R)$

$$b \colon \operatorname{Bl}_I = \operatorname{Proj}(\bigoplus_{n \geq 0} I^n) \to \operatorname{Spec}(R).$$

¹It means that for every scheme X and pair of morphisms $f_1: X \to \operatorname{Proj}(A)$ and $f_2: X \to \operatorname{Spec}(R')$ that agree when further composing to $\operatorname{Spec}(R)$, then there exists a unique morphism to $f: X \to \operatorname{Proj}(B)$ such that f is f_1 and f_2 when postcomposing with the maps to $\operatorname{Proj}(A)$ and $\operatorname{Spec}(R')$ respectively.

The exceptional divisor of the blow-up is the closed subscheme of $\operatorname{Proj}(\bigoplus_{n\geq 0} I^n)$

$$E = V_+(\bigoplus_{n \ge 0} I^{n+1}).$$

(1) Show that b defines an isomorphism of schemes

$$b \colon \operatorname{Bl}_I \setminus E \to \operatorname{Spec}(R) \setminus V(I).$$

(2) Let A be a ring, $R = A[x_0, \ldots, x_n]$ and $I = (x_0, \ldots, x_n)$. Show that $E \cong \mathbb{P}^n_A$.

Remark. Let us introduce a bit of intuition. Points (1) and (2) subsume the key philosophy of blow-ups. First of all a blow-up is a map which is an isomorphism outside of a the fiber closed subscheme V(I). We will see later that in nice cases I/I^2 is to be interpreted as the conormal bundle of V(I) in $\operatorname{Spec}(R)$ (i.e. tangent vectors going out of V(I)). Therefore E can be interpreted as the projective space of the vector space of directions outside of V(I). Meaning that for each direction going outside of V(I), there is a corresponding point in E. For example, in the actual computation above, the exceptional divisor E is the space of lines through the origin in \mathbb{A}^{n+1} , i.e. \mathbb{P}^n .

(3) Standard blow-up charts. Consider the same setting as in the last item. Show that Bl_I can be identified as the scheme

$$V_{+}(x_{i}Y_{j}-x_{j}Y_{i})$$

inside $\mathbb{A}_A^{n+1} \times \mathbb{P}_A^n = \operatorname{Proj}(A[x_0, \dots, x_n] \otimes_A A[Y_0, \dots, Y_n])$ where the grading is taken to be the Y-grading (see exercise 2.4).

Remark. See here for a representation of the blow-up at (x_0, x_1) of \mathbb{A}^2 using the standard charts. The projection to the x, y-plane is a bijection outside of the pre-image of the origin which is a line.

Exercise 4. Strict transforms. Let R be a ring. Let I be an ideal and $b ext{: } \operatorname{Bl}_I \to \operatorname{Spec}(R)$ the blow-up at the ideal I. Let $J \subset R$ be another ideal. We define the strict transform of V(J) to be the blow-up of V((I+J)/J) in $\operatorname{Spec}(R/J)$.

(1) Show that St_I can be identified with be the closed subscheme of Bl_I

$$V_+\left(\bigoplus_n I^n\cap J\right).$$

(2) Show that b induces an isomorphism

$$b \colon \operatorname{St}_J \setminus E \to V(J) \setminus V(I)$$
.

(3) Resolving a singularity. Let k be a field. Compute the strict transform with $R = k[x_0, x_1]$, the ideal $I = (x_0, x_1)$ and $J = (x_1^2 - (x_0^3 + x_0^2))$. Use the standard blow-up charts. Show that this strict transform is regular.

Remarks. The equation of the last item is the equation of a *nodal curve* which is a type of singular curve. See here for a representation. The tangent space at the origin has dimension 2, which is why the curve is not regular.

Since the blow-up at a point replaces a point by "directions out of the point", it is no surprise that blowing up a node at its nodal point removes the singularity.

Exercise 5. A criterion for affineness. Let X be a scheme. Let $f \in$ $\mathcal{O}_X(X)$. Let

$$X_f = \{ x \in X \mid f(x) \neq 0 \}$$

where f(x) denotes the image of f in k(x).

- (1) Show that X_f is open.
- (2) Show the following lemma.

Lemma. A scheme X is affine if and only if there exists $f_1, \ldots, f_n \in$ $\mathcal{O}_X(X) = A$ that generates the unit ideal in A and opens X_{f_i} are affine.

For item (2), show that it suffices to show that the natural map

$$\Gamma(X, \mathcal{O}_X)_{f_i} \to \Gamma(X_{f_i}, \mathcal{O}_{X_{f_i}})$$

is an isomorphism.

To show this, show the following intermediate lemmas.

- (a) For injectivity, show that if X is a quasi compact scheme and $g \in$ $\Gamma(X,\mathcal{O}_X)$ such that the restriction of g to $\Gamma(X_f,\mathcal{O}_{X_f})$ is zero, then there is some n > 0 such that $f^n g = 0$ in $\Gamma(X, \mathcal{O}_X)$.
- (b) For surjectivity, show that if X admits a finite cover by affine schemes with intersections being quasi-compact, then if $g \in \Gamma(X_f, \mathcal{O}_{X_f})$ then there is some n > 0 such that $f^n g$ is the image of an element $\Gamma(X,\mathcal{O}_X)$.

Exercise 6. Let k be an algebraically closed field. Are the following schemes regular?

- (1) $V_{+}(XZ Y^{2}) \subseteq \mathbb{P}^{2}$ (2) $V(xz y^{2}) \subseteq \mathbb{A}^{3}$ (3) $V_{+}(XZ Y^{2}, YW Z^{2}, XW YZ) \subseteq \mathbb{P}^{3}$ (4) $V(y^{2} x(x 1)(x + 1) \subseteq \mathbb{A}^{2}$

Hint: Be careful about the characteristic of k!

Exercise 7. Let $k = \mathbb{F}_p(t)$, and consider $X_k = V(x^p - t) \subseteq \mathbb{A}^1_k$. Show that X is regular.

However, let $k' = \mathbb{F}_p(t^{1/p}) \supseteq k$. Then show that $X_{k'}$ is not regular.

Remark. As we will shortly see, we have a Cartesian diagram

$$X_{k'} \xrightarrow{X_k} X_k$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k') \xrightarrow{} \operatorname{Spec}(k).$$

We say that $X_{k'}$ is obtained by a base field extension (or base change) of X_k .

What the previous exercise then tells us is that that being regular (or even reduced) is not stable under field extensions. We will later see a notion, called *smoothness*, which implies regularity, and which is stable under base change.